Solution accuracy

Merton-Bewley-Aiyagari mode

< 口 > < 同

Pareto Extrapolation

An Analytical Framework for Studying Tail Inequality

Émilien Gouin-Bonenfant Alexis Akira Toda

Columbia UCSD

February 24, 2021

ÉGB & AAT Pareto Extrapolation Columbia & UCSD

Introduction	Pareto extrapolation	Merton-Bewley-Aiya
0000	00000 000000	

Background and questions

- Macroeconomic models increasingly incorporate heterogeneity
 - Who gains/loses from policy?
 - How does effectiveness of policy depend on heterogeneity?
- Empirically, wealth distribution has Pareto tail
 - We want to work with such models
 - Actually, people *are* working with such models
 —without realizing (e.g., Krusell & Smith, 1998)

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Background and questions

- Macroeconomic models increasingly incorporate heterogeneity
 - Who gains/loses from policy?
 - How does effectiveness of policy depend on heterogeneity?
- Empirically, wealth distribution has Pareto tail
 - We want to work with such models
 - Actually, people *are* working with such models
 —without realizing (e.g., Krusell & Smith, 1998)
- However, solving models with Pareto tails is nontrivial:
 - Analytical methods require strong assumptions
 - Existing numerical methods miss upper tail
- What is lacking: systematic approach for analyzing and solving heterogeneous-agent models that
 - $1. \ \mbox{generate fat-tailed}$ wealth distributions but
 - 2. do not admit closed-form solutions

Introduction 0●000	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model 0000000000000000	Conclusion O

This paper

- Propose new systematic approach ("Pareto Extrapolation") for tackling heterogeneous-agent models with fat-tailed wealth distributions numerically
- Our method makes solution algorithm more
 - 1. transparent
 - (:: exploit economic theory as much as possible)
 - 2. efficient
 - (:: narrow down equilibrium object/use good initial guess)
 - 3. accurate
 - (:: correct for truncation error)

Introduction 0●000	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model 0000000000000000	Conclusion O

This paper

- Propose new systematic approach ("Pareto Extrapolation") for tackling heterogeneous-agent models with fat-tailed wealth distributions numerically
- Our method makes solution algorithm more
 - 1. transparent
 - (:: exploit economic theory as much as possible)
 - 2. efficient
 - (:: narrow down equilibrium object/use good initial guess)
 - 3. accurate
 - (:: correct for truncation error)
- Achieve all of above with zero additional computational cost
- ► You should use it. MATLAB code available.

ÉGB & AAT

• • • • • • • • • • • • •

Basic idea

- Asymptotic analysis: for rich agents, only multiplicative shocks matter
 - 1. Analytically solve "asymptotic" problem (e.g., no labor income, no borrowing constraint)
 - 2. Compute Pareto exponent ζ from random growth theory (Beare & Toda, 2017)
 - 3. Impose parametric restrictions based on economic theory (e.g., existence of equilibrium, finite mean)
- Pareto extrapolation: use Pareto exponent ζ to correct for truncation error when
 - 1. constructing transition probability matrix from law of motion
 - 2. computing aggregate quantities in market clearing condition

ÉGB & AAT

(日) (同) (三) (三)

Introduction 000●0	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model 000000000000000	Concl O

Applications

- 1. Evaluate solution accuracy using analytically solvable Aiyagari model with Pareto tail
 - \blacktriangleright Pareto extrapolation: \sim 100 times more accurate than existing method
 - Existing method significantly underestimates top wealth shares
- 2. Solve a Merton-Bewley-Aiyagari (MBA) model that features
 - (a) persistent idiosyncratic endowment and investment risk
 - (b) borrowing constraint
 - (c) portfolio decision
 - (d) recursive utility
 - (e) endogenous Pareto-tailed wealth distribution

lusion

Pareto Extrapolation

Applications

- 1. Evaluate solution accuracy using analytically solvable Aiyagari model with Pareto tail
 - \blacktriangleright Pareto extrapolation: \sim 100 times more accurate than existing method
 - Existing method significantly underestimates top wealth shares
- 2. Solve a Merton-Bewley-Aiyagari (MBA) model that features
 - (a) persistent idiosyncratic endowment and investment risk
 - (b) borrowing constraint
 - (c) portfolio decision
 - (d) recursive utility
 - (e) endogenous Pareto-tailed wealth distribution
 - Introduce 2% wealth tax, with extra tax revenue rebated as consumption subsidy
 - Billionaire wealth tax has unintended consequences
 - (a) Little effect on inequality
 - (b) Bottom 90% experiences 0.17% welfare loss

Introduction 0000●	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model	Conclusion O

Literature

- Quantitative macro with realistic wealth distribution: Krusell & Smith (1998), Quadrini (2000), Cagetti & De Nardi (2006), Krueger, Mitman, & Perri (2016), Carroll, Slacalek, Tokuoka, & White (2017), McKay (2017)
- Analytical models with Pareto tails: Nirei & Souma (2007), Benhabib, Bisin, & Zhu, (2011, 2015, 2016), Moll (2014), Toda (2014, 2019), Toda & Walsh (2015, 2017), Aoki & Nirei (2016, 2017), Gabaix, Lasry, Lions, & Moll (2016), Cao & Luo (2017)
- 3. Characterization of Pareto exponent: Kesten (1973), Reed (2001), Beare & Toda (2017)
- 4. Solution methods for heterogeneous-agent models: Algan, Allais, & Den Haan (2008), Young (2010), Winberry (2018)
- Bridging theoretical and quantitative analysis: Achdou, Han, Lasry, Lions, & Moll (2017)

Pareto extrapolation

Solution accuracy

Merton-Bewley-Aiyagari mode

Conclusion 0

Issues with existing algorithms

- Basic approach in existing methods ("Truncation")
 - 1. Set up wealth grid $W_N = \{w_n\}_{n=1}^N$ and exogenous states $s \in S = \{1, \dots, S\}$; solve individual optimization problem on $S \times N$ grid by dynamic programming
 - 2. Construct $SN \times SN$ transition probability matrix Q from individual law of motion; compute stationary distribution $Q'\pi = \pi$
 - 3. Impose market clearing $W = \sum_{s=1}^{S} \sum_{n=1}^{N} \pi_{sn} w_n$

Columbia & UCSD

Pareto Extrapolation

Pareto extrapolation •0000 •00000 Solution accuracy

Merton-Bewley-Aiyagari mode

Conclusion 0

Issues with existing algorithms

- Basic approach in existing methods ("Truncation")
 - 1. Set up wealth grid $W_N = \{w_n\}_{n=1}^N$ and exogenous states $s \in S = \{1, \dots, S\}$; solve individual optimization problem on $S \times N$ grid by dynamic programming
 - 2. Construct $SN \times SN$ transition probability matrix Q from individual law of motion; compute stationary distribution $Q'\pi = \pi$
 - 3. Impose market clearing $W = \sum_{s=1}^{S} \sum_{n=1}^{N} \pi_{sn} w_n$
- ▶ Issue: largest grid point w_N really represents interval $[w_N, \infty)$
- Hence if wealth distribution is fat-tailed, Truncation method
 - 1. overestimates transition probability $\Pr(sN \rightarrow s'n')$ for n' < N; hence underestimates tail probability π_{sN}
 - 2. underestimates rich agents' wealth $E[w | w \ge w_N]$

◆□> ◆□> ◆三> ◆三> 三日 のへの

Pareto extrapolation

- For now, assume Pareto exponent ζ known (How to compute: later)
- Use Pareto exponent ζ to correct for truncation error:
 - 1. Imagine hypothetical infinite grid $\mathcal{W}_{\infty} = \{w_n\}_{n=1}^{\infty}$, with $w_n = w_N + (n N)h$ for some h > 0 for n > N
 - 2. Set

 $r_n := (Probability of grid point n) \propto w_n^{-\zeta - 1}$

3. Use above to modify law of motion & calculation of integral

(日) (同) (三) (三)

Pareto extrapolation

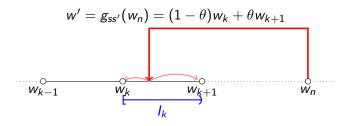
Solution accuracy

Merton-Bewley-Aiyagari mode

Conclusion O

Constructing transition probability, n < N

- Law of motion: $w' = g_{ss'}(w_n)$
- Suppose $w' \in I_k = [w_k, w_{k+1})$
- Use Young (2010)'s "nonstochastic simulation": Assign probabilities to match law of motion on average



Columbia & UCSD

Pareto Extrapolation

Pareto extrapolation

Solution accuracy

Merton-Bewley-Aiyagari model

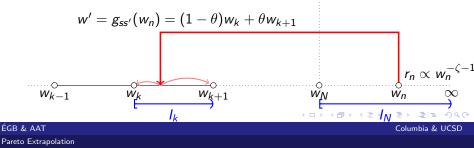
Conclusion 0

Constructing transition probability, n = N

- ▶ Hypothetical grid $W_{\infty} = \{w_n\}_{n=1}^{\infty}$, with $w_n = w_N + (n N)h$ for some h > 0 for n > N; same as before, except $r_n \propto w_n^{-\zeta 1}$
- ▶ Zero additional computational cost because correction is only for n = N (single point)

[Q,pi] = getQ(PS,PJ,p,x0,xGrid,g,G,zeta)

Actual grid <-----> Hypothetical grid



Pareto extrapolation

Solution accuracy

Merton-Bewley-Aiyagari model

< < >> < </p>

Conclusion 0

Computing aggregate wealth

- Existing method: $E[w] = \sum_{s=1}^{S} \sum_{n=1}^{N} \pi_{sn} w_n$
- ▶ But *w* is Pareto-distributed with exponent ζ for $w \in [w_N, \infty)$
- Pareto density $f(x) = \zeta w_N^{\zeta} x^{-\zeta-1}$, so conditional mean is

$$\int_{w_N}^{\infty} x \zeta w_N^{\zeta} x^{-\zeta-1} \, \mathrm{d}x = \frac{\zeta}{\zeta-1} w_N = w_N + \frac{1}{\zeta-1} w_N$$

Thus aggregate wealth approximated by

$$\mathsf{E}[w] = \sum_{s=1}^{S} \left(\sum_{n=1}^{N} \pi_{sn} w_n + \frac{1}{\zeta - 1} \pi_{sN} w_N \right)$$

• If compute $E[w^{\nu}]$, correction term is $\frac{\nu}{\zeta - \nu}$

Pareto Extrapolation

Pareto extrapolation

Solution accuracy

Merton-Bewley-Aiyagari mode

< 口 > < 同

How to compute Pareto exponent?

- Remaining issue: get Pareto exponent ζ
- Can compute ζ from
 - 1. analytical solution to "asymptotic problem" and
 - 2. Beare & Toda (2017) formula

Columbia & UCSD

Pareto Extrapolation

Pareto extrapolation	Merton-Bewley-Aiyagari model	Conclusion
00000		

Asymptotic problem

- ► For rich agents, labor (additive) income irrelevant ⇒ Focus on capital (multiplicative) income
- Example: income fluctuation problem with stochastic returns

$$\begin{array}{ll} \text{maximize} & \mathsf{E}_0 \sum_{t=0}^{\infty} [\beta(1-p)]^t \frac{c_t^{1-\gamma}}{1-\gamma} \\ \text{subject to} & w_{t+1} = R_{s_t} (w_t - c_t) + y_{s_{t+1}}, \\ & w_t \geq \underline{w} \end{array}$$

 Asymptotic linearity of policy function proved in Ma & Toda (JET 2021)

Asymptotic problem

- ► For rich agents, labor (additive) income irrelevant ⇒ Focus on capital (multiplicative) income
- ► Example: income fluctuation problem with stochastic returns

$$\begin{array}{ll} \text{maximize} & \mathsf{E}_0 \sum_{t=0}^{\infty} [\beta(1-p)]^t \frac{c_t^{1-\gamma}}{1-\gamma} \\ \text{subject to} & w_{t+1} = R_{s_t} (w_t - c_t) + 0, \\ & w_t \geq 0 \end{array}$$

 Get closed-form solutions as in Toda (JET 2014, JME 2019) because homogeneous problem

Image: Image:

∃ >

Introduction 00000	Pareto extrapolation ○○○○○ ○○○●○○	Solution accuracy	Merton-Bewley-Aiyagari model	Conclusion O

Computing Pareto exponent ζ

- Get asymptotic law of motion $w' = G_{ss'}w$
- Define matrix of conditional moment generating functions by

$$M(z) = \left(\mathsf{E}\left[\mathrm{e}^{z\log G_{\mathrm{ss'}}} \,\Big|\, s, s'
ight]
ight)$$

• Beare & Toda (2017): Pareto exponent $z = \zeta$ solves

$$(1-p)\rho(P\odot M(z))=1,$$

where

- ρ: spectral radius (largest eigenvalue)
- P: transition probability matrix
- p: birth/death probability
- ▶ ⊙: Hadamard (entry-wise) product

ÉGB & AAT

→ Ξ →

Pareto extrapolation	Merton-Bewley-Aiyagari model	Conclusion
00000 000000		

Top wealth shares

 If π_N probability assigned to top grid point w_N and Pareto exponent ζ, then tail probability is

$$\Pr(X \ge x) = \int_x^\infty \pi_N \zeta w_N^{\zeta} x^{-\zeta - 1} \, \mathrm{d}x = \pi_N w_N^{\zeta} x^{-\zeta}$$

Total wealth held by wealthy agents is

$$\mathsf{E}[X; X \ge x] = \int_x^\infty \pi_N \zeta w_N^{\zeta} x^{-\zeta} \, \mathrm{d}x = \frac{\zeta}{\zeta - 1} \pi_N w_N^{\zeta} x^{-\zeta + 1}$$

 Hence if W aggregate wealth, top p fractile wealth share analytically computed as

$$s(p) = rac{\zeta}{\zeta - 1} \pi_N^{1/\zeta} rac{w_N}{W} p^{1 - 1/\zeta}$$

Pareto extrapolation

Solution accuracy

Merton-Bewley-Aiyagari model

Conclusion 0

Top tail type and exit probabilities

- ▶ Recall Pareto exponent formula $(1 p)\rho(P \odot M(\zeta)) = 1$
- ▶ By Perron-Frobenius theorem, $P \odot M(\zeta)$ has left Perron vector $\bar{\pi} \gg 0$ such that $\sum_{s=1}^{S} \bar{\pi}_s = 1$

Proposition

Left Perron vector $\bar{\pi}$ is top tail type distribution:

$$\lim_{w\to\infty} \Pr(s_t = s \mid w_t > w) = \bar{\pi}_s.$$

Furthermore, conditional top tail exit probability given by

$$\lim_{w \to \infty} \Pr(w_{t+1} \le w \mid w_t > w, s_t = s)$$
$$= 1 - (1 - p) \mathsf{E}\left[\min\left\{1, G_{t+1}^{\zeta}\right\} \mid s_t = s\right].$$

Columbia & UCSD

ÉGB & AAT

Pareto Extrapolation

Evaluating solution accuracy

- Consider Krusell-Smith (1998) model, though for analytical tractability assume
 - 1. No aggregate risk
 - 2. No income risk
 - 3. Idiosyncratic discount factor risk and random birth/death only
 - 4. Subsistence consumption with natural borrowing constraint
- Due to homogeneity, there exists semi-analytical solution
- Compare numerical solutions using
 - 1. Pareto extrapolation (new method)
 - 2. Truncation (existing method)

Introduction 00000	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model 000000000000000	Conclusion O

Model: households

Budget constraint (with natural borrowing limit)

$$a_{t+1}=\frac{R}{1-p}(a_t-c_t+\omega),$$

where R: gross risk-free rate, p: birth/death probability, ω : wage, a_t : financial wealth excluding current income

Agent maximizes utility

$$\mathsf{E}_0 \sum_{t=0}^{\infty} \left(\prod_{i=0}^{t-1} eta_{s_i}(1-p)
ight) \log(c_t - \underline{c}),$$

▶ β_s : discount factor in state $s \in S = \{1, ..., S\}$ (with transition probability matrix $P = (p_{ss'})$ and stationary distribution $\pi = (\pi_s)$)

• $\underline{c} = \phi \omega$: subsistence consumption with $\phi \in [0, 1)$

Introduction 00000	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model 0000000000000000	Conclusion O

Model: firm

- ► Representative firm with Cobb-Douglas production function $AK^{\alpha}L^{1-\alpha} + (1-\delta)K$
- Rents capital and labor from households
- In equilibrium, L = 1 and first-order condition

$$R = A\alpha K^{\alpha - 1} + 1 - \delta$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction 00000	Pareto extrapolation 00000 000000	Solution accuracy 00000000	Merton-Bewley-Aiyagari model 000000000000000	Conclusion O

Equilibrium

Stationary equilibrium consists of R, ω, K , optimal consumption rules $\{c_s(a)\}_{s=1}^S$, and stationary distributions $\Gamma = \Gamma(a, s)$ such that

- 1. R satisfies firm FOC
- 2. $c_s(a)$ solves utility maximization problem
- 3. capital market clears, so

$$RK = \sum_{s=1}^{S} \pi_s \int a \Gamma(\mathrm{d} a, s),$$

4. Γ is stationary distribution of law of motion

$$(a,s)\mapsto egin{cases} \left(rac{R}{1-p}(a-c_s(a)+\omega),s'
ight) & ext{w.p. } (1-p)p_{ss'}, \ (0,s') & ext{w.p. } p\pi_{s'} \end{cases}$$

ÉGB & AAT Pareto Extrapolation Columbia & UCSD

< □ > < 同 >

Parameter values of analytical model

Exogenously set parameters:

Description	Symbol	Value
Birth/death probability	р	0.025
Discount factor	β_{s}	(0.9, 0.95, 1)
TFP	A	1
Capital share	α	0.38
Capital depreciation rate	δ	0.08

Assume

$$P = egin{bmatrix} 1-q & q & 0 \ q/2 & 1-q & q/2 \ 0 & q & 1-q \end{bmatrix}$$

토▶ 토⊫ ∽९ Columbia & UCSD

ÉGB & AAT

Pareto Extrapolation

Calibration of \pmb{q}, ϕ

- Calibrate q, ϕ to match wealth distribution
- Get q = 0.0927 and $\phi = 0.7286$ with targeted moments:

Moment	Data	Model
Top 1% wealth share	32.38	32.90
Top 10% wealth share	69.95	68.72
Top 50% wealth share	98.71	98.11
Pareto exponent	1.52	1.55

= 200

Pareto Extrapolation

Pareto extrapolation 00000 000000 Solution accuracy

Merton-Bewley-Aiyagari model

Relative error (%) in aggregate capital

- Compute aggregate capital numerically using true policies
- Use affine-exponential grid wdetails
- N: number of grid points; \bar{w} : wealth truncation point

Method:	Truncation		Pareto	extrapol	ation	
$\bar{w}/K_{ m RA}$	<i>N</i> = 10	100	1,000	<i>N</i> = 10	100	1,000
10 ¹	-36.920	-26.850	-26.530	-3.195	-1.882	-2.260
10 ²	-21.520	-8.690	-7.860	-0.437	0.062	-0.031
10 ³	-15.640	-2.950	-2.240	-0.261	0.036	0.017
104	-12.930	-1.080	-0.640	-0.234	0.011	0.008
10 ⁵	-11.510	-0.420	-0.180	-0.221	0.003	0.002
10 ⁶	-10.720	-0.180	-0.050	-0.212	0.001	0.001

ÉGB & AAT

Pareto Extrapolation

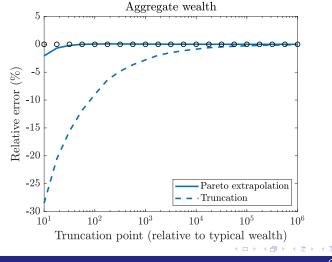
Columbia & UCSD

Pareto extrapolation 00000 000000 Solution accuracy

Merton-Bewley-Aiyagari mode

Conclusion 0

Relative error in aggregate wealth (%)



Pareto Extrapolation

ÉGB & AAT

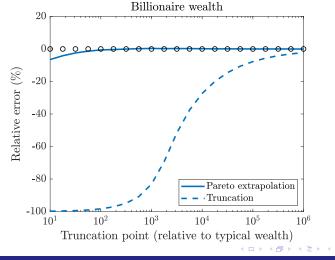
Columbia & UCSD

Pareto extrapolation 00000 000000 Solution accuracy

Merton-Bewley-Aiyagari mode

Conclusion 0

Relative error in billionaire wealth (%)



Columbia & UCSD

Pareto Extrapolation

Pareto extrapolation 00000 000000 Solution accuracy

Conclusion 0

Columbia & UCSE

Merton-Bewley-Aiyagari (MBA) model

Unit continuum of ex ante identical, infinitely lived EZ agents

$$U_t = \left((1-\beta)c_t^{1-1/\varepsilon} + \beta \mathsf{E}_t [U_{t+1}^{1-\gamma}]^{\frac{1-1/\varepsilon}{1-\gamma}} \right)^{\frac{1}{1-1/\varepsilon}}$$

• $s \in S = \{1, \dots, S\}$: Markov chain

- Labor productivity: h_s; investment ability: z_s
- Tax on labor, capital income, and estate: τ_h, τ_k, τ_e
- Ex post investment return:

$$egin{aligned} & ilde{R}_{sj} = 1 + (1 - au_k)(R_{sj} - 1), \ & ilde{R}_f = 1 + (1 - au_k)(R_f - 1), \end{aligned}$$

where $R_{sj} = z_s e^{\epsilon_j} R_f$ and ϵ : IID with values $\epsilon_1, \ldots, \epsilon_J$

Budget constraint

$$w' = ilde{R}_f(w + (1 - au_h)\omega h_s - I - c) + ilde{R}_{sj}I \ge w$$
 is a set on C

ÉGB & AAT

Pareto Extrapolation

Markov chain

- Agent (head of household) dies with probability p each period, replaced by heir
- Ability state s conditional on survival has transition probability matrix P_v = (p_{v,ss'})
- Ability state s conditional on death has transition probability matrix P_d = (p_{d,ss'})
- Convenient to define matrix $P(z) \coloneqq (1-p)P_v + p(1-\tau_e)^z P_d$

	Pareto extrapolation		Merton-Bewley-Aiyagari model	
00000	00000 000000	00000000	000000000000000000	

Asymptotic problem

Looks complicated, but really EASY...

Proposition

$$\begin{split} \rho_{s} &:= \max_{\theta} \mathsf{E} \left[(\tilde{R}_{sj}\theta + \tilde{R}_{f}(1-\theta))^{1-\gamma} \, \Big| \, s \right]^{\frac{1}{1-\gamma}} \text{ exists. Letting} \\ D &= \operatorname{diag}(\rho_{1}^{1-\gamma}, \ldots, \rho_{S}^{1-\gamma}), \text{ asymptotic problem has a solution iff} \\ \beta \rho(DP)^{\frac{1-1/\varepsilon}{1-\gamma}} < 1. \text{ Value function of the asymptotic problem is} \\ \text{given by } v_{s}(w) &= b_{s}w, \text{ where } b = (b_{1}, \ldots, b_{S}) \gg 0 \text{ is the unique} \\ \text{positive solution to the system of nonlinear equations} \end{split}$$

$$b_{s} = \left((1-\beta)^{\varepsilon} + \beta^{\varepsilon} \left(\rho_{s} \left(\sum_{s'=1}^{S} P_{ss'}(1-\gamma) b_{s'}^{1-\gamma} \right)^{\frac{1}{1-\gamma}} \right)^{\varepsilon-1} \right)^{\frac{1}{\varepsilon-1}}$$

Introduction 00000	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model 000●00000000000	Conclusion O

Pareto exponent

Looks complicated, but just apply Beare & Toda (2017) formula

Lemma

Let

$$G_{sj} = (1 - (1 - eta)^{arepsilon} b_s^{1-arepsilon}) (ilde{R}_{sj} heta_s^* + ilde{R}_f (1 - heta_s^*)) > 0$$

be ex post gross growth rate of wealth for asymptotic agents in state (s, j). Define conditional MGF of log growth rate by

$$\mathcal{M}_{s}(z) = \mathsf{E}\left[\mathrm{e}^{z\log G_{sj}} \,\Big|\, s
ight] = \sum_{j=1}^{J} p_{j} G_{sj}^{z}$$

and $D(z) = \text{diag}(M_1(z), \dots, M_S(z))$. Suppose $p_{v,ss} > 0$ for all s and $G_{sJ} > 1$ for some s. Then there exists a unique solution $z = \zeta > 1$ to $\rho(P(z)D(z)) = 1$, which is Pareto exponent.

ÉGB & AAT

Pareto Extrapolation

Pareto extrapolation	Merton-Bewley-Aiyagari model	Co
00000	000000000000000	

Parameter values

Parameter	Symbol	Value
Discount factor	β	0.96
Relative risk aversion	γ	2
Elasticity of intertemporal substitution	ε	1
Capital share	α	0.38
Capital depreciation	δ	0.08
Labor income tax	$ au_h$	0.224
Capital income tax	$ au_{k}$	0.25
Estate tax	$ au_e$	0.4
Borrowing limit	W	$-\omega/4$

4 Columbia & U<u>CSD</u>

= 990

< □ > < □ > < □ > < □ > < □ >

Pareto Extrapolation

Labor & investment productivity

- $s = (s^{\pi}, s^{\tau})$, where π : permanent; τ : transitory
- s^π takes "low", "high", and "high-entrepreneur"; constant during lifetime of head of household (hence P_ν = I)
- $\blacktriangleright h_s = h_s^{\pi} h_s^{\tau}$
- $\log h_s^{\tau}$ is AR(1) calibrated from Guvenen (2009)
- Discretize log h_s^{τ} using Farmer & Toda (QE 2017)
- Calibrate P_d from correlation of income between parent & child
- ► Set $z_s = z_e$ for entrepreneur, otherwise $z_s = 1$; ϵ is IID normal with variance σ^2 , discretize using 3-point Gauss-Hermite

< □ > < □ > < 三 > < 三 > < 三 > < 三 = < ○ < ○

Introduction 00000	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model 000000●000000000	Conclusion O

Calibration of z_e, σ

• Calibrate z_e, σ to match wealth distribution

• Get
$$(z_e, \sigma) = (1.0625, 0.3299)$$

Moment (%)	Data	Model
Top 50% wealth share	99	99
Top 10% wealth share	75	78
Top 1% wealth share	36	42
Top 400 wealth share	2.3	2.4
Top 400 exit rate	5.44	5.63

・ロト ・回ト ・ヨト ・

Pareto Extrapolation

Introduction 00000	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model 0000000●0000000	Conclusion O

Validation

 Although not targeted, fraction of entrepreneurs across wealth distribution is close to data

Moment (%)	Data	Model
Share of entrepreneurs in		
Top 1%	65	61
Тор 5%	51	58
Top 10%	42	48
Тор 20%	30	32
Wealth share of entrepreneurs	48	47

Pareto Extrapolation

Introduction 00000	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model 00000000000000000	Conclus O

Equilibrium

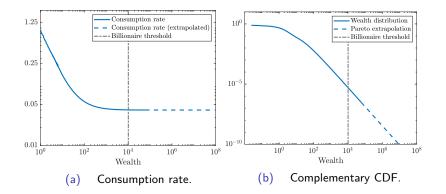
1.064 1.062 - ~~ 1.066 -	1.064 Capital supply Capital demand 1.062 2 1.064 2 1.064 2 1.064 1.062 2 1.064 1.065 1.055		5 1.6 1.1 exponent (ζ)	35 1.7
	Object	Symbol	Value	
	Capital-output ratio	K/Y	2.72	
	Consumption-output ratio	C/Y	0.60	
	Tax revenue share	T/Y	0.21	
	Risk-free rate	$R_f - 1$	5.96%	
	Pareto exponent	ζ	1.59	∋

ÉGB & AAT

Pareto Extrapolation

Introduction 00000	Pareto extrapolation 00000 000000	Solution accuracy 000000000	Merton-Bewley-Aiyagari model ○○○○○○○○○○○○○○○○

Extrapolation



O > <
 O >

ÉGB & AAT Pareto Extrapolation

Solution accuracy

Merton-Bewley-Aiyagari model

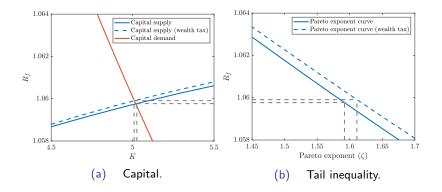
Introducing wealth tax

- Study effect of 2% wealth tax above some threshold
- ▶ Threshold is either billionaire (top 0.0005%) or top 1%
- Extra tax revenue rebated to all households as consumption subsidy

Solution accuracy

Merton-Bewley-Aiyagari model

Billionaire wealth tax



Introduction 00000	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model 000000000000000000000000000000000000	Conclusion O
Top 1%	wealth tax			
1.064		1.064	· · · · · · · · · · · · · · · · · · ·	

R_{f} R_f 1.06 1.06 1.0581.0581.45 1.51.551.61.651.74.84.9 $\frac{5}{K}$ 5.15.2Pareto exponent (ζ) Capital (wealth tax on top (b) Tail inequality (wealth tax on (a) 1%). top 1%).

< • • • • • • •

Introduction 00000 Pareto extrapolation 00000 000000 Solution accuracy

Merton-Bewley-Aiyagari model

Conclusion 0

Effect of wealth tax on aggregates (%)

Object	Symbol	Wealth T	h Tax on	
		Billionaires	Top 1%	
Output	Y	-0.06	-1.08	
Capital	K	-0.17	-2.82	
Risk-free rate	R_{f}	0.02	0.25	
Wage rate	ω	-0.06	-1.08	
Tax revenue	Т	0.17	3.57	

Columbia & UCSD

= 200

Pareto Extrapolation

Pareto extrapolation 00000 000000 Solution accuracy

Merton-Bewley-Aiyagari model

Conclusion 0

Effect of wealth tax on wealth shares (%)

Object	Wealth Tax on		
	None	Billionaires	Top 1%
Bottom 50%	1.27	1.33	2.36
Next 40%	20.5	20.8	26.0
Next 9%	35.8	36.2	38.6
Top 1% (excl. billionaires)	39.7	40.1	29.5
Billionaires	2.74	1.78	2.84

= 200

Pareto Extrapolation

Pareto extrapolation 00000 000000 Solution accuracy

Merton-Bewley-Aiyagari model

Image: A math a math

Effect of wealth tax on welfare (%)

τ_{c}	0	-0.74%	0	-1.35%
Groups	Billionai	re Wealth Tax	Top 1%	Wealth Tax
Bottom 50%	-0.24	-0.17	-0.65	0.69
Next 40%	-0.24	-0.17	1.43	2.80
Next 9%	0.25	0.32	2.08	3.46
Top 1% \setminus bill.	1.40	1.47	-28.2	-27.2
Billionaires	-23.8	-23.7	-36.5	-35.7
Welfare (₩)	-0.21	0.22	-0.15	1.47

= ~ ~ ~

ÉGB & AAT Pareto Extrapolation

Introduction 00000	Pareto extrapolation 00000 000000	Solution accuracy	Merton-Bewley-Aiyagari model 000000000000000

Conclusion

- Pareto extrapolation: systematic approach for solving heterogeneous-agent models with Pareto tails
- Pareto (1897):

Nous sommes tout de suite frappé du fait que les points ainsi déterminés, ont une tendance très marqué à se disposer en ligne droite. (We are instantly struck by the fact that the points determined this way have a very marked tendency to be disposed in straight line.)

 Our approach is more transparent, efficient, and accurate at zero additional computational cost

Conclusion

Conclusion

- Pareto extrapolation: systematic approach for solving heterogeneous-agent models with Pareto tails
- Pareto (1897):

Nous sommes tout de suite frappé du fait que les points ainsi déterminés, ont une tendance très marqué à se disposer en ligne droite. (We are instantly struck by the fact that the points determined this way have a very marked tendency to be disposed in straight line.)

- Our approach is more transparent, efficient, and accurate at zero additional computational cost
- No excuse! MATLAB code available https://github.com/alexisakira/Pareto-extrapolation

Conclusion

Transition probability matrix is sparse

- *P* is $SN \times SN$, so $(SN)^2$ elements
- ▶ For s, s', n < N, law of motion takes at most 2 values with positive probability</p>

 \implies at most $2S^2(N-1)$ nonzero elements

▶ For s, s', n = N, law of motion can take N values with positive probability

$$\implies$$
 at most S^2N nonzero elements

Hence fraction of nonzero elements is at most

$$\frac{2S^2(N-1) + S^2N}{(SN)^2} = \frac{3N-2}{N^2} \to 0$$

as $N \to \infty$, so P is sparse (zero additional computational cost) \bigcirc go back

Simulation is bad with Pareto

- Sample mean ¹/_I ∑^I_{i=1} w_i converges by LLN, but convergence rate I^{1−1/ζ} very slow with Pareto exponent ζ < 2</p>
- With ζ = 1.1 and 1% error, I = 10²² (≈ # of sand grains) necessary

Sample size <i>I</i>	Pareto exponent ζ				
	≥ 2	1.5	1.3	1.1	
$10^0 = 1$	1.00000	1.00000	1.00000	1.00000	
10 ²	0.10000	0.21544	0.34551	0.65793	
10 ⁴	0.01000	0.04642	0.11938	0.43288	
10 ⁶	0.00100	0.01000	0.04125	0.28480	
10 ⁸	0.00010	0.00215	0.01425	0.18738	
10 ¹⁰	0.00001	0.00046	0.00492	0.12328	

Columbia & UCSD

Simulating Aiyagari model

Simulation is

very slow (time (sec) is for one simulation)

very inaccurate go back

Т	1	Relative error (%)	Dispersion (%)	Time (sec)
1,000	10 ³	21.93	92.97	0.07
	10^{4}	10.97	47.99	0.38
	10 ⁵	6.70	27.53	3.13
	10 ⁶	6.69	16.33	41.23
10,000	10 ³	23.76	96.68	0.39
	10^{4}	20.42	50.07	3.76
	10 ⁵	9.69	27.47	31.43
	10 ⁶	6.64	16.07	414.30
			< D > < D >	▲ 몸 ▲ 몸 ▶ ▲ 몸 ▶
AAT				Columbia & UCSE

ÉGB & AAT

Pareto Extrapolation

Constructing exponential grid

- Suppose want to construct N-point exponential grid on (a, b)
- Issue: a < 0 possible</p>
 - 1. Choose a shift parameter s > -a
 - 2. Construct an N-point evenly-spaced grid on $(\log(a+s), \log(b+s))$
 - 3. Take the exponential
 - 4. Subtract s
- Choose s to cover "typical scale" (e.g., median point corresponds to representative-agent model) e go back

Columbia & UCSD